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1 Introduction

1.1 Motivations

Large Language Models (LLMs) have revolutionized natural language processing (NLP),
demonstrating remarkable capabilities across diverse domains (McIntosh et al. 2024).
Their increasing integration into critical sectors such as healthcare, law, and cybersecurity
necessitates rigorous evaluation of their performance (McIntosh et al. 2024). While general
benchmarks have contributed to progress, these benchmarks often fail to capture specific
requirements crucial to specialized applications, indicating the need for domain-specific
evaluation frameworks.

1.2 Problem Statement

Current benchmarking practices face several critical challenges. Benchmark data contam-
ination (BDC), resulting from overlaps between training datasets and test benchmarks,
significantly inflates performance metrics and misleads stakeholders about the true ca-
pabilities of a model (Golchin & Surdeanu 2024). Many evaluation methods also use
probability-based scoring in multiple-choice tests, which inadequately represents the
true reasoning and generation capabilities of a model (Lyu, Wu, & Aji 2024). Traditional
static benchmarks do not adequately evaluate LLM performance in evolving knowledge
domains, as demonstrated by substantial performance declines observed when models
are tested against dynamically evolving benchmarks (Xia, Deng, & L. Zhang 2024).

1.3 Research Questions

This research seeks to answer the following questions:

• How can a domain-adaptable LLM benchmarking framework mitigate common
evaluation challenges such as data contamination and evaluation method misalign-
ment?

• To what extent does retrieval-based augmentation improve LLM performance in
specialized tasks?

• What multidimensional metrics best capture nuanced performance aspects of LLMs?

• How can benchmarks adapt to evolving domain knowledge while maintaining
consistent performance evaluation?
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Chapter 1: Introduction 1.4 Research Objectives

1.4 Research Objectives

Aligned with these research questions, the objectives of this study are:

• Develop a modular and dynamic benchmarking framework that is adaptable to
specialized domains.

• Implement and evaluate multiple LLM architectures and augmentation strategies,
including retrieval augmentation and knowledge graph integration.

• Establish a comprehensive multimetric evaluation approach.

• Create mechanisms for continual benchmark evolution to reflect updates in domain
knowledge.

1.5 Scope

This research focuses specifically on domain-specific benchmarking frameworks for LLMs
demonstrated through cybersecurity compliance advisory tasks, addressing a rapidly
evolving and complex knowledge domain. The applicability of this framework to similar
specialized domains is also examined.

1.6 Ethical Considerations

Key ethical considerations include the following:

• Potential misinformation risks due to incorrect or misleading model output.

• Transparency regarding known model limitations.

• Fairness of evaluation across diverse domain requirements.

• Privacy concerns addressed through the use of publicly available and synthetic data.

• Mitigating automation bias by emphasizing justification and evidence-supported
responses.

1.7 Layout

The dissertation proceeds with a Literature Review examining current practices, emerging
frameworks, and some distilled conclusions based on the review; followed by Output
Design detailing the methodology, architecture, and evaluation parameters of the proposed
framework; and concludes with comprehensive references.
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2 Literature Review

2.1 Background

Benchmarking LLMs serves several critical functions. Benchmarks provide a solid basis
for performance evaluations of how well LLMs perform across different capabilities
such as reasoning, knowledge retrieval, language understanding, etc. They in turn allow
researchers to quantify improvements over time and compare different model architectures
and training techniques. Organizations can then use benchmark results to inform the
appropriate selection of models for specific applications based on their strengths and
weaknesses. Benchmarks highlight areas where models struggle, guiding future research
efforts. Many benchmarks now include evaluations of harmful outputs, biases, and other
safety concerns. Despite their importance and utility, LLM benchmarks face several
significant challenges.

Benchmarking LLMs has historically been crucial for measuring progress and compar-
ing models. Standard benchmarks such as General Language Understanding Evaluation
(GLUE), SuperGLUE and Massive Multitask Language Understanding (MMLU) provided
fixed datasets and tasks to evaluate core NLP capabilities, enabling consistent compar-
isons between models (McIntosh et al. 2024). These benchmarks focus on end-to-end
metrics for tasks such as answering questions, translating, or common-sense reasoning,
treating the model as a black box that produces an answer per query. This approach
helped quantify improvements and highlight strengths and weaknesses of the model over
time. Organizations could use benchmark results to guide model selection for applications
and researchers could identify where models struggle to spur future advances. Over
time, benchmarks also began to assess ethical and safety dimensions, such as bias and
harmful output, to ensure responsible artificial intelligence (AI) development. In short,
LLM benchmarks serve as standardized yardsticks for performance, driving the evolution
of the field.

However, foundational benchmark practices come with assumptions and limitations.
One such assumption is that improvements in model performance on high-profile bench-
marks like MMLU, HumanEval, etc., are indicative of the model developing a deeper
understanding or acquiring certain abilities. In addition, a common practice in LLM
evaluation is using the predicted probabilities of a model to choose answers in tasks,
especially multiple-choice questions, instead of letting the model generate an answer in
natural language. Many benchmark evaluations, for efficiency, will have the model score
each possible answer (option A, B, C, etc.) and pick the highest-probability option as
its answer. This method is label-based or probability-based evaluation, as opposed to
generation-based evaluation, where the model actually produces an answer, sometimes
with an explanation, and that output is checked. The main reason why many current evalu-
ation frameworks default to probability-based scoring is due to computational constraints,
namely, it is faster and cheaper to get the probability of a model on a fixed set of answers
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Chapter 2: Literature Review 2.1 Background

than to generate text. The assumption is that this method of evaluation serves as a suit-
able proxy for the behavior of a model in generation-based tasks. Finally, long-standing
statistical metrics such as accuracy for classification, F1, precision/recall, BLEU/ROUGE
for generation, etc., have provided a way to objectively quantify performance. However,
these statistical measures are limited in their ability to properly stratify and score nuanced
outputs that often result from real-world application.

A growing trend in LLM research and application is the incorporation of tools, such as
Retrieval-Augmented Generation (RAG), to enhance LLM capabilities and accuracy. A
RAG system has (1) a retrieval component that fetches documents relevant to the query,
and (2) a generation component that produces a final answer using both its internal knowl-
edge and the retrieved context (see Figure 2.1), with the aim to reducing hallucinations
and keeping knowledge up-to-date (Gao et al. 2024, p. 1). Traditional LLM benchmarks
assume that the model’s knowledge and reasoning are self-contained, that the model
knows the answer from training or must infer it from a given prompt context. They do
not explicitly test the model’s ability to retrieve and use external information, nor do
they decompose performance into subtasks. For example, MMLU assesses knowledge
across domains with multiple-choice questions, but a model’s score conflates knowledge
recall and reasoning, without isolating whether an error was due to lack of information
or incorrect reasoning. Similarly, holistic evaluation efforts like Holistic Evaluation of
Language Models (HELM) provide diverse metrics (accuracy, calibration, bias, etc.), but
still treat the model as a single black-box system producing an answer per query. In short,
conventional benchmarks excel at measuring what answer the model gives, but not how
it got that answer.
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Chapter 2: Literature Review 2.2 Related Work

Figure 2.1: A representative instance of the RAG process applied to question answering. It
mainly consists of 3 steps. 1) Indexing. Documents are split into chunks, encoded into
vectors, and stored in a vector database. 2) Retrieval. Retrieve the Top k chunks most
relevant to the question based on semantic similarity. 3) Generation. Input the original
question and the retrieved chunks together into LLM to generate the final answer. Source:
(Gao et al. 2024, p. 3)

2.2 Related Work

2.2.1 Benchmark Contamination Issues

One critical threat to benchmark integrity is BDC, which is the leakage of test examples
into the training data of a model. Xu et al. (2024) underscore that BDC is widespread
and often hard to detect, yet undermines the credibility of benchmark results. Essentially,
many high-profile benchmarks have had some of their questions or answers seen by large
models during training, for instance, models memorized solutions to portions of MMLU
or HumanEval. The reasoning is that it leads to inflated evaluation scores as a model may
appear to excel at a task not because it truly mastered the underlying skill, but because
it recalls the answers from memory. The survey also finds that while some researchers
originally argued that memorizing answers is not necessarily bad or unavoidable, the
prevalent view is that it “poses significant challenges to the reliability and validity of LLM
evaluations” (Xu et al. 2024, p. 1). Although the survey is limited to only compiling known
techniques, one gap they identify is the lack of a unified, systematic approach to defining
and tackling BDC. They highlight that no single mitigation will solve the issue completely
given the scale of LLM training data, which often sweeps up entire Internet archives.
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Chapter 2: Literature Review 2.2 Related Work

An analysis by Golchin & Surdeanu (2024) revealed specific contaminated benchmarks,
for example, finding that datasets like AG News and XSum had leaked content when
tested with GPT-4. These findings reinforce Xu et al. (2024)’s conclusions that training
data contamination is common and widespread across many tasks.

2.2.2 Misalignment in LLM Evaluation Practices

Another issue is the misalignment between how we evaluate LLMs in benchmarks and
how LLMs are actually used in the real world. McIntosh et al. (2024) argue that many
benchmarks fail to measure what we really care about. In their audit of 23 state-of-the-
art benchmarks, they found that evaluations often rely on simplistic proxies or narrow
setups that do not reflect genuine performance in deployment. For example, several
benchmarks credit a model for getting the correct answer but do not check whether the
model’s reasoning process made sense or if it just guessed patterns. Many benchmarks
lack diversity in inputs or values, meaning a model can score well by overfitting to
stereotyped prompts. McIntosh et al. (2024) observed issues such as cultural bias in
test content and high sensitivity to prompt formatting, which indicates that benchmark
scores might not translate to real-world reliability. This focus on final answers rather
than the process means that models can sometimes ’game’ benchmarks, thus achieving
good scores through shortcuts or pattern matching rather than true understanding. In
short, models could appear state-of-the-art on a leaderboard yet disappoint in practical
usage because the evaluation was misaligned with real usage conditions. A limitation of
the study by McIntosh et al. (2024) itself is that their critique is qualitative and does not
provide a quantitative fix. However, the study unveils a diversity of issues present within
benchmarking practices that highlight the need for intentional improvement.

A concrete example of evaluation misalignment is given by Lyu, Wu, & Aji (2024),
which brings to light some compelling insights into the current limitations of predicted
probability-based evaluations. The primary metrics considered in the study were (1)
accuracy under each evaluation mode, probabilities-based evaluations versus generation-
based, and (2) consistency between the two. They show that the probability-based method
“inadequately aligns with generation-based prediction” (Lyu, Wu, & Aji 2024, p.1) creating
a misrepresentation of the performance and behavior of a model (see Figure 2.2). For
example, the option that the model assigns highest probability is not always the one it
would output when asked to explain or answer directly. The misalignment could manifest
as the model having a hidden preference it does not act on when forced to choose via
probabilities. Essentially, the authors treat the generation-based outcome as the ’ground
truth’ of what the model really believes or would do in practice, and they check how
often the probability proxy matches that. This underscores that the convenience and cost
efficiency of probability-based evaluations come at the cost of not fully understanding the
real-world behavior of a model. A limitation of Lyu, Wu, & Aji (2024)’s study is that they
assume generation-based evaluation is the ’ground truth’ measure of performance, but
generation brings its own uncertainties. For example, a model might generate a correct
answer phrased differently from the expected answer, and automatic evaluation could
count that wrong unless carefully handled. They do note that evaluating generation often
requires careful parsing or human judgment, which is why probabilistic methods gained
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popularity in the first place, but they do not propose solutions to ameliorate the extra costs
of doing so.

Figure 2.2: An illustration of label-based, sequence-based and generation-based predic-
tions for evaluating LLMs on NLP benchmarks. Source: (Lyu, Wu, & Aji 2024, p.2)

2.2.3 Newer Benchmarking Frameworks

Xia, Deng, & L. Zhang 2024 tackle the problem of benchmarks becoming overfitted by
introducing EVOEVAL, an approach to dynamically evolve coding challenges (see Figure
2.3). They start from popular coding benchmarks like HumanEval and MBPP and use
LLMs themselves to generate new variations of these programming problems. The idea
is to create challenges that are similar in spirit but sufficiently different in surface details
or domain, so that an LLM which memorized the original solutions will be caught off
guard. The study uses standard coding task metrics, such as the pass rate of generated
code against unit tests (e.g. pass@k metrics), to evaluate model proficiency. However,
they compared metrics on the original benchmarks versus the evolved ones. A key
finding in their analysis is the drop in performance (%) when switching to evolved tasks.
Models that previously topped the coding leaderboards saw absolute drops in accuracy of
20%–47% in the evolved problems, and many fell dramatically in ranking. This reveals that
existing coding benchmarks probably overestimated true model competency, as models
had effectively overfit on the narrow distribution or even leaked solutions. Xia, Deng,
& L. Zhang 2024 highlight phenomena like brittleness to slight rewording, for instance,
a prompt asking for a solution “in two sentences” might confuse a model that learned
to expect a certain format. Some EVOEVAL tasks require combining two simpler tasks,
which many models struggled with, showing weakness in multistep reasoning or code
synthesis. Some notable limitations are: (1) using an LLM to generate benchmarks might
introduce its own biases or errors. (2) The authors had to ensure that the new problems
were neither trivial variations nor unsolvable; this probably required manual curation,
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which could be time consuming. (3) EVOEVAL is specifically focused on the domain of
coding. Although their findings pertain to code benchmarks, it is entirely possible that
these trends are prevalent in other domains but would require their own “evolution” to
prove definitively. (4) Finally, as models improve or new training data appear, possibly
including EVOEVAL itself in the future, this approach would have to continually generate
further evolved tasks.

Figure 2.3: Overview of EVOEVAL evolving problem generation pipeline. Source: (Xia,
Deng, & L. Zhang 2024, p.4)

Dalvi et al. (2024) take a very practical angle by introducing LLMeBench, a bench-
marking framework aimed at making LLM evaluation flexible, extensible, and efficient.
LLMeBench comes with generic dataset loaders, supports multiple model providers, and
has many pre-implemented standard evaluation metrics (see Figure 2.4). Importantly, it
supports in-context learning setups like zero-shot and few-shot, meaning it can automate
prompts for models with given examples if needed. The framework does not invent new
metrics, but streamlines the use of existing ones such as accuracy for classification, F1,
precision/recall, BLEU/ROUGE, etc. Another aspect is that by supporting multiple tasks,
LLMeBench encourages the use of holistic evaluation. LLMeBench can easily run a model
through a battery of tasks such as translation, question-answering, and reasoning puzzles
using a single framework. Therefore, this framework fosters comprehensive evaluation
rather than a single-metric focus. One limitation is that LLMeBench, while flexible, is only
as good as the benchmarks one feeds into it, but it does not solve what to evaluate, it helps
with how. If one were to use poor-quality or biased benchmark data, the framework would
faithfully report metrics, but the insights would still depend on the input. In addition,
LLMeBench will not automatically flag contamination issues or suggest new tasks and
is therefore susceptible to the issues already raised. In terms of real-world applicability,
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LLMeBench addresses the barrier to entry, which could allow domain experts to focus
more on writing good questions and let the tool handle the rest. McIntosh et al. (2024)
noted that many benchmarks suffer from “implementation inconsistencies” and slow
iteration, which LLMeBench directly tackles by providing a consistent implementation
and enabling quick reruns of evaluations. To summarize key challenges in standard LLM
benchmarking, Table 2.1 presents a comparative analysis of major studies on benchmark
contamination, overfitting, and misalignment.

Figure 2.4: The architecture of the LLMeBench framework. The dotted boxes represent
the core implemented modules of the architecture. Customization for new tasks, datasets,
and models can be done on Dataset, Model Provider, Evaluation, and Asset modules.
Source: (Dalvi et al. 2024, p.1)

Table 2.1: General LLM Benchmarking Issues

Paper & Authors Benchmarking Issue Proposed Approach Key Findings Future Directions

McIntosh et al.
2024

Overfitting in static
benchmarks;
misalignment with
real-world use.

Analyzed 23
benchmarks, advocating
for evolving test sets.

Benchmarks overestimate
model reliability due to
gaming.

Implementing truly
dynamic bench-
marks remains
unsolved.

Xu et al. 2024 Test contamination
leads to inflated scores.

Advocates systematic
dataset filtering and
leak detection.

Training data
contamination is
widespread.

Large-scale de-
tection remains a
challenge.

Lyu, Wu, & Aji
2024

Misalignment between
probability-based and
free-form evaluation.

Compares
probability-based vs.
generated response
accuracy.

Probability selection
misrepresents true model
ability.

Efficient generation-
based scoring
remains an open
problem.

Xia, Deng, & L.
Zhang 2024

Overfitting in static
coding benchmarks.

EVOEVAL: Dynamically
mutates coding tasks.

Models show 20-47%
drop on evolved
problems.

Needs broader
application beyond
coding.

Dalvi et al. 2024 Fragmented evaluation
tools.

LLMeBench: Unified
multi-metric
benchmarking.

Standardizes model
comparisons.

Still depends on pre-
existing datasets.
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2.2.4 RAG & Multi-Task Evaluation

The survey by Gao et al. (2024) provides a comprehensive overview of RAG systems and
specifically introduces metrics and benchmarks to assess RAG models alongside an up-to-
date evaluation framework. RAG evaluation frameworks go one step further by explicitly
measuring the different stages of a retrieve-and-generate pipeline (see Figure 2.5) (Es et al.
2023). Evaluating such systems involves multidimensional metrics:

• Retrieval quality – Is the retrieved context relevant and sufficient for the query?

• Generation quality – Is the final answer correct and is it faithful to the retrieved
evidence?

• Integration performance – How well does the LLM incorporate the retrieved infor-
mation? Does it avoid hallucination or ignore evidence?

Figure 2.5: Overview of RAG Evaluations. Adapted from: (Gao et al. 2024, p. 16)

Recent RAG-specific evaluators such as Retrieval Augmented Generation Assessment
(RAGAS) (Es et al. 2023) and the Automated RAG Evaluation System (ARES) (Saad-Falcon
et al. 2024) exemplify this approach. RAGAS introduces a reference-free multimetric
framework to automatically assess RAG pipelines. It proposes a suite of zero-shot LLM-
based evaluation metrics that target each aspect of the pipeline, (1) the relevance of the
retrieved passages, (2) the faithfulness of the LLM’s response to those passages, and (3)
the overall quality of the response. In practice, RAGAS uses prompt-based evaluation
with an LLM, such as GPT-4, to score output on several dimensions, eliminating the need
for ground truth answers for every query. Concretely, the RAGAS score combines two
metrics for the generation stage, faithfulness and answer relevancy, and two metrics for
retrieval, context precision, and context recall. Faithfulness measures whether the answer
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accurately reflects the information found in the retrieved documents (i.e., no unsupported
claims), and answer relevancy checks if the answer addresses the query directly without
unnecessary content. Context precision/recall evaluate whether retrieved passages are
relevant to the query and cover the needed information.

In contrast, existing LLM benchmarks rarely assess these facets separately. Traditional
QA evaluations might reward an answer that is correct, but they will not detect whether the
model had to hallucinate missing facts or if it ignored provided context. RAG evaluation
frameworks fill this gap by explicitly rewarding answers that are correct and grounded
in evidence. For example, Gao et al. (2024) note that RAG models are particularly aimed
at mitigating hallucinations and providing traceable sources, so the evaluation criteria
emphasize factuality and source attribution. This is aligned with emerging benchmarks
such as Knowledge Intensive Language Tasks (KILT), a set of knowledge-intensive tasks
that require models to retrieve supporting Wikipedia passages, where evaluations similarly
combine a correctness measure with evidence retrieval accuracy. RAGAS and ARES add
automation and finer granularity to this more comprehensive style of evaluation. ARES,
for example, evaluates RAG systems along three dimensions, context relevance, answer
faithfulness, and answer relevance. It creates synthetic QA pairs to fine-tune lightweight
’judge’ models that can score each aspect, and calibrates them with a small number of
human-annotated examples. This allowed ARES to reliably evaluate RAG performance
on eight knowledge-intensive tasks, from benchmarks like KILT and SuperGLUE, with
only a few hundred human labels, by having the learned judges predict ratings for
thousands of cases. Table 2.2 summarizes recent advancements in RAG benchmarking,
highlighting how different studies address retrieval accuracy, generation quality, and
multistage evaluation.

Table 2.2: RAG / Multi-Task Benchmarking Issues

Paper & Authors Benchmarking Issue Proposed Approach Key Findings Future Directions

Gao et al. 2024 Conventional
benchmarks ignore
retrieval models.

Multi-stage RAG
evaluation: retrieval,
generation, integration.

Distinguishes retrieval
quality from generated
response.

Widespread adop-
tion of multi-stage
metrics is needed.

Es et al. 2023 Lack of automated RAG
evaluation.

Uses LLM-based
scoring for retrieval and
accuracy.

Enables scalable
evaluation without
ground truth labels.

LLM-generated
scores may intro-
duce biases.

Saad-Falcon et
al. 2024

Scaling RAG evaluation
with minimal human
labeling.

ARES: Uses few human
labels to train
evaluators.

Reduces manual scoring
dependency.

Updating evaluators
for evolving data re-
mains an issue.

Rasiah et al.
2024

Benchmarks too
simplistic for real-world
applications.

SCALE: Legal domain
benchmark with
long-text, multilingual
tasks.

Models struggle with
long, domain-specific
inputs.

Similar domain-
specific benchmarks
are needed.

Friel, Belyi, &
Sanyal 2025

No standardized RAG
benchmark or
explainability.

RAGBench: 100k
examples + TRACe, an
explainability
framework.

Enables large-scale,
explainable RAG
evaluation.

Ensuring alignment
between automated
and human scoring
remains an issue.
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2.3 Conclusions

Examining these works collectively, several common themes emerge with regard to general
principles and best practices for domain-specific LLM benchmarks.

2.3.1 Maintaining Benchmark Integrity

A consistent concern is to ensure that the evaluation truly measures generalization, not
memory. Xu et al. (2024)’s survey highlighted how pervasive this issue is, warning that
models often get inflated scores by ’knowing’ test answers in advance. It is important
to distinguish that the memorization of the answers is not the problem in question, but
can be an indicator of the real issue, which is brittleness and overfitting. Although the
mere presence of model memorization does not definitively prove overfitting has occurred
benchmarking solutions should be designed to elucidate this issue. Works such as Xia,
Deng, & L. Zhang (2024)’s EVOEVAL, which regenerates and mutates test questions, show
promise in this regard. The general principle made clear in this review is to keep the
benchmarks novel and unpredictable. Echoing this theme, McIntosh et al. (2024) advocates
for dynamic benchmarks that evolve so that models cannot simply overfit. For domain-
specific benchmarks, this might mean using proprietary or freshly collected data that was
not in common pre-training corpora, or continuously adding new test cases over time. In
doing so, we maintain the integrity of the benchmark, ensuring that the scores remain a
trustworthy signal of the capability of a model.

2.3.2 Evolving Evaluation to Reflect Real Usage

There is a clear trend towards making evaluations more holistic, realistic and aligned
with how LLMs are actually used. Lyu, Wu, & Aji (2024) explicitly show that evaluation
methods can be misaligned, if we optimize for convenience like in the case of multiple-
choice probability evaluation, we might miss the true behavior of the model. Similarly,
McIntosh et al. (2024) and Rasiah et al. (2024) push for benchmarks that test models in more
complex scenarios (multi-turn interactions, long documents, diverse languages) because
real-world tasks are complex. A general principle is that benchmarks should simulate
the conditions under which we expect the model to perform. For instance, if an LLM will
be used by non-English speakers, the benchmark should have multilingual components,
as SCALE does. If the model will function as a dialogue agent, the benchmark should
include interactive prompts or multistep reasoning tasks, not just single-turn queries. We
see this in RAGBench and Li, Yuan, & Z. Zhang (2024)’s work by incorporating retrieval
into the evaluation system. Since many real deployments use tools to assist LLMs, the
benchmarks must evaluate that combined system. Another aspect of evolving evaluation
is the use of multimetric assessment. Instead of a one-number accuracy or BLEU, there
is a move to break down the performance into submetrics such as RAGBench’s TRACe
to get a more complete picture. This is especially important in domain-specific contexts
like legal or medical, where an answer might need to be not only correct but also justified
and safe. By having granular metrics such as correctness, justification adequacy, harmful
content check, etc., benchmark results become more actionable, developers can see why a
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model fails and improve it. In summary, best practices involve designing benchmarks that
are high-fidelity proxies for deployment scenarios: dynamic, diverse, and evaluated on
multiple axes of quality.

2.3.3 Leveraging Tools and Hybrid Approaches

Another emerging principle is that benchmarks can and should test a model’s ability to use
tools or external knowledge, rather than confining the evaluation to end-to-end prompting.
Li, Yuan, & Z. Zhang (2024) and Friel, Belyi, & Sanyal (2025) both illustrate this by focusing
on retrieval-augmented settings. This intersection of tool-use with benchmarking is
increasingly relevant as advanced models often come with an ecosystem of plugins or
support systems. A domain-specific example: A cybersecurity LLM might have access to a
database of known vulnerabilities; a good benchmark would measure how well the LLM
queries that database and integrates the results into its advice, not just what it remembers.
By designing benchmarks that allow tool use, for example, providing an API or knowledge
base as part of the test environment, we measure a more practical skill, the ability of an
AI to know what it does not know and find out. This also helps combat hallucinations
and data staleness, as seen in RAG approaches. In intersections, this addresses some
contamination issues by relying on an external source rather than training memory. This
in turn aligns with the goal of realistic evaluation, since human AI users often expect AI
to cite sources or use web search. It is a shift from the old paradigm of closed-book QA
towards an open-book evaluation model.

In particular, RAG evaluation highlights the importance of ground truth reference
signals for factual tasks. In base LLM evaluation, this insight suggests incorporating
open-book testing: instead of only closed-book QA, have benchmarks where the model
can consult a knowledge source, as a form of RAG, and see if that boosts performance.
If an LLM under closed-book conditions fails a question but succeeds when allowed to
retrieve relevant text, that indicates the base model’s limitation was missing knowledge,
not reasoning ability. Conversely, if it fails even with the reference provided, the issue lies
in understanding or reasoning. This differentiated evaluation, closed-book versus open-
book, was historically done in QA research and can be informed by RAG frameworks.
Gao et al. (2024) mention that RAG enables continuous knowledge updates and domain-
specific info integration. Evaluating a base model in scenarios with and without such
updates can quantify how much retrieval augments it. In summary, by borrowing RAG’s
metrics such as faithfulness, relevance, etc., and techniques such as LLM-based judging,
multicomponent analysis, we can design more nuanced and robust evaluations for base
models. This ensures that enhanced capabilities such as factual grounding are explicitly
tested and that a model’s score reflects not just whether it is right, but why and how it
arrives at the answers.
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3 Output Design

This framework provides a systematic, repeatable, and automated approach to benchmark-
ing advisory LLMs across various domains. By integrating domain-specific knowledge,
retrieval augmentation, and knowledge graphs, it ensures robust evaluations that align
with real-world application needs. The modular design allows organizations to continu-
ously update their benchmarking pipeline as domain requirements evolve, ensuring that
advisory models remain accurate, trustworthy, and effective in real-world deployment.
While demonstrated here with a cybersecurity compliance use case, the framework’s
architecture is intentionally domain-agnostic. The same methodology can be applied to
financial advisory, legal consultation, healthcare guidance, or any other domain requiring
specialized knowledge. This flexibility allows organizations to adapt the benchmark-
ing process to their specific needs while maintaining rigorous evaluation standards (see
Figure 3.1).

Figure 3.1: Depicts the cyclical nature of benchmarking with five phases: Benchmark
Creation, Model Evaluation, Results Analysis, Framework Refinement, and Benchmark
Evolution.
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3.1 Methodologies

To develop an effective cybersecurity compliance advisory benchmarking framework, we
employ a structured methodology that ensures real-world relevance and automation. The
benchmark is designed around publicly available cybersecurity standards (e.g., NIST
800-53, NIST Cybersecurity Framework (CSF) 2.0, CIS Controls, CSA Cloud Controls
Matrix (CCM), GDPR, and MITRE ATT&CK) and focuses on evaluating an LLM’s ability
to advise on compliance-related queries. This includes:

1. Identifying Real-World Advisory Tasks – Defining key use cases such as answering
compliance-related questions, identifying gaps, providing policy recommendations,
and cross-mapping standards (NIST 2020).

2. Automating Benchmark Dataset Creation – Extracting and structuring compliance
questions from regulatory texts, case law, certification exams, and expert Q&A
forums (McIntosh et al. 2024).

3. Evaluating Multiple Architectures – Comparing base models, fine-tuned models,
RAG-enhanced models, and GraphRAG architectures (Xu et al. 2024).

4. Continuous Refinement and Benchmark Evolution – Preventing benchmark over-
fitting by generating test variants and monitoring for artificial performance inflation
(Xia, Deng, & L. Zhang 2024). The framework addresses benchmark evolution
through three practical mechanisms:

(a) Scheduled Resource Updates: Periodic manual replacement of resource docu-
ments with the latest regulatory versions, recognizing that automated detection
of domain knowledge evolution represents a complex research problem requir-
ing continuous monitoring of regulatory bodies.

(b) Schema-Preserved Regeneration: Maintaining consistent output schemas
while regenerating questions with updated resource documents, producing
differently worded questions with the same evaluative content to test genuine
understanding versus memorization.

(c) Multi-Model Generation: Using different LLMs (e.g., Gemma2:9b, Llama3.1,
GPT-4) with identical schemas and resource documents to create diverse ques-
tion formulations while ensuring benchmarks are not biased toward specific
model families.

3.2 Software

The benchmarking framework is implemented with Docker and Ollama for seamless
local model deployment and evaluation (Ollama 2024). Ollama enables running 7B-
13B parameter open-source models on consumer GPUs, ensuring cost-effective testing.
The TrustGraph framework is used for GraphRAG, leveraging knowledge graphs to
enhance retrieval accuracy (TrustGraph 2024). Hugging Face’s "evaluate" library provides
standardized performance metrics, while Python-based scripts automate dataset curation,
evaluation pipeline execution, and metric tracking. Additional tools include:
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• LangGraph – For agent workflow orchestration and state management (LangGraph
2025).

• LangChain – For LLM-based retrieval, response generation, and logging interactions
(LangChain 2024).

• FAISS – For vector-based document retrieval in standard RAG configurations
(Douze et al. 2025).

• Qdrant – For knowledge graph storage and querying in GraphRAG experiments
(Qdrant 2025).

• Pydantic – For dynamic schema generation and structured output validations (Py-
dantic 2025).
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3.3 System

Figure 3.2: Domain-Bench framework architecture showing the complete three-phase eval-
uation process: (1) EvalAgent-driven benchmark generation using LangGraph workflows
and multi-modal RAG, (2) systematic evaluation across four distinct model architectures,
and (3) multidimensional assessment using five evaluation criteria.
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The benchmarking system follows a modular three-phase pipeline (see Figure 3.2), com-
paring four LLM configurations (see Figure 3.3):

1. Base LLM - Direct model inference using Ollama (7B-13B open models).

2. Standard RAG - Vector-based retrieval augmentation using FAISS indexing.

3. GraphRAG - Knowledge graph-based retrieval using TrustGraph framework.

4. Agent - Multi-tool ReAct agent combining vector RAG, graph RAG, and web search
capabilities.

Figure 3.3: Four model architectures evaluated systematically: BaseLLM (direct inference),
StandardRAG (vector-based retrieval), GraphRAG (knowledge graph retrieval using
TrustGraph), and Agent (multi-tool ReAct agent combining multiple retrieval strategies).

Each architecture is deployed through a unified interface and evaluated on curated
benchmarks of domain-specific queries. The pipeline executes queries across all architec-
tures, retrieves relevant context (for RAG/GraphRAG/Agent models), logs outputs, and
calculates performance metrics using the EvalAgent framework.

3.4 Resources

The implementation relies on publicly available compliance datasets and documentation:

• NIST Special Publications (SP 800 series)(NIST 2020)

• NIST Cybersecurity Framework (CSF) 2.0 (NIST 2024)

• CIS Critical Security Controls v8 (CIS 2023)

• FedRAMP Security Controls & Compliance Guidelines (FedRAMP 2023)

• GDPR regulatory text and enforcement case studies (EuropeanCommission 2023)

The system employs an automated EvalAgent framework that processes academic
papers to extract evaluation principles, generates domain-specific system prompts, and
creates benchmarks through multi-document RAG retrieval from compliance resources.
(see Figure 3.4) (Krishna 2024).
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Figure 3.4: EvalAgent benchmark generation workflow showing the automated extraction
of evaluation principles from academic papers through a five-step process: principle
extraction, schema generation, system prompt creation, and benchmark generation using
multi-modal RAG.

3.5 Evaluation Parameters

To measure the success of each implementation, the benchmarking framework (see Fig-
ure 3.5) evaluates models across multiple dimensions:

1. Agreement – Is there consistency between a model’s predicted probabilities and its
ability to generate coherent, relevant, and accurate text? High agreement implies
that the model’s probabilistic outputs accurately reflect its generative capabilities
across diverse tasks, including those with both definitive solutions and open-ended
inquiries. (Lyu, Wu, & Aji 2024)

2. Function Correctness – Does the answer reliably and accurately fulfill the intended
function specified in a task or prompt? Does it properly address its real-world
intended usage? (Xia, Deng, & L. Zhang 2024)

3. Reasoning – Can the model logically justify its recommendations? (Xu et al. 2024)

4. Relevance – Does the response directly address the compliance question? (Es et al.
2023)

5. Retrieval Effectiveness (for RAG/GraphRAG) – Are retrieved documents relevant
and properly used? (Gao et al. 2024)
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Figure 3.5: Evaluation pipeline demonstrating the systematic assessment process from
benchmark questions through multi-architecture execution to comprehensive scoring
across five evaluation dimensions.

Each model is tested on a standardized benchmark and its performance is logged across
these metrics. The results are analyzed to determine:

• Which model architecture performs best?

• Does retrieval improve reasoning and accuracy?

• Does GraphRAG reduce hallucinations and improve compliance adherence?

• Are improvements genuine or due to artificial benchmark gaming? (Xia, Deng, &
L. Zhang 2024)

If the best-performing model exhibits benchmark overfitting (e.g., memorization of test
questions), the architecture is adjusted, re-tested, and iteratively refined (Rasiah et al.
2024).
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3.6 Implementation Workflow

The Domain-Bench framework operates through an integrated workflow that combines
automated benchmark generation with systematic architecture evaluation (as shown in
the complete framework, Figure 3.2):

• Principle Extraction: Academic papers are processed to extract evaluation criteria
using the EvalAgent’s Chain-of-Thought reasoning capabilities.

• Benchmark Generation: Domain-specific questions are created through multi-modal
RAG, combining vector search and knowledge graph retrieval from compliance
resources.

• Architecture Evaluation: Each benchmark is executed across all four model configu-
rations, with responses logged and contextualized.

• Multidimensional Assessment: The same EvalAgent framework that generated
benchmarks evaluates responses across five dimensions, ensuring consistency and
fairness.

This end-to-end automation enables scalable, reproducible evaluation while maintaining
the flexibility to adapt to evolving domain requirements.
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