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Section 1 – Project Overview
1.1 Purpose of Document

The purpose of this document is to detail the building of deep learning models
using  a  convolutional  neural  network  architecture.  The  different  techniques,
models and methods used to improve performance will be discussed.

Section 2 – Dataset
2.1 Bee vs Wasp

For  this  project  I  chose  the  Bee  vs  Wasp  dataset  found  on  Kaggle  at
https://www.kaggle.com/datasets/jerzydziewierz/bee-vs-wasp.  I  imported  the
dataset and created a new folder called images that I then put subfolders bee1,
bee2, wasp1, wasp2, other_insect and other_noinsect into. The data loader in
my  custom train_models  function  then  creates  classes  based  on  the  folder
structure and feeds that to the model. The data set itself isn't the cleanest as it
seems that some images have not been placed in the correct folder which will
sometimes  give  the  model  wrong  information.  No  doubt  this  will  affect  the
accuracy that can be attained with this dataset.

Section 3 – Experimenting
3.1 Trial and Error

To begin with I created a custom function named train_models that I could use to
conduct my tests a little faster. With a trial and error approach, I began manually
trying different learning rates, model types and image sizes, along with training
models  with  unfrozen  weights.  Eventually  I  thought  I  should  start  trying  to
automate some of these tuning methods and, by doing so, hopefully optimize
the outcomes. 

3.2 Automating Hyperparameter Tuning
In  research  I  found  a  Python  library  called  Optuna  that  could  be  used  to
automate hyperparameter tuning. Optuna does this by created a “study” that
runs a user specified amount of trials and uses an objective function to suggest
user specified parameters to optimize for a certain metric. So in this case, I
created a custom objective function named tune_hyperparameters that takes in
learning rate, batch size, and weight decay parameters and returns the error
rate of the model trained with those parameters. The Optuna optimize function
then  suggests  hyperparameters  that  should  start  lowering  the  error  rate  of
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successive trials. I then wrote another custom function called optimization_study
that  ran  the  Optuna  study  using  the  tune_hyperparameters  function.  The
optimization_study functions also selects the trial that did the best and proceeds
to unfreeze all  of the weights and train the model again with the best found
hyperparameters. Some of my initial tests with this automated hyperparameter
tuning proved promising as I was able to get the error rate lower than I had
previously gotten it.

3.3 Automate Testing Different Models
As I started to achieve some good results with my automations I decided to go
even  further.  I  wrote  another  custom  function  called  try_models  that  loops
through a list of different models, runs an Optuna study on it  and saves the
model state from the best trial from that particular study on that particular model.
Once the try_model function has finished looping through the list of models it
selects the model that achieved the lowest error rate, creates a learner from that
model  and  loads  the  model  state  of  the  best  trial  from that  model.  It  then
proceeds  to  unfreeze  all  of  the  weights  and  train  the  model  again  with
hyperparameters from that particular model's best trail. After training is complete
the function  freezes the  weights  again,  displays the  results,  and returns the
model. I found some success using this new function as long as I kept the trial
size relatively low as when I increased the trial size it exponentially increases
compute time and quickly reaches the limits of free tier kernels.

3.4 Data Augmentation
I  also  briefly  experimented  with  some data  augmentation,  namely  randomly
cropping to a 224x224 image size and introducing a random horizontal flip to the
images. Tests with this didn't seem to yield any improved results, in fact it seems
it may have adversely affected model performance in training. I theorize that this
didn't have much effect because the dataset already possesses a great deal of
randomness so injecting more isn't advantageous.

Section 4 – Kernels
4.1 Usage Limits

Very early on it was clear that usage limits of free tier kernels would significantly
limit the ability to experiment, test and iterate. For this reason, the approach was
taken to use more than one kernel so that when one reached its limit the other
could be used to continue with the project. Google Colab and Kaggle were both
used to complete this project and in the following two items(4.2 & 4.3) in this
section I detail what each kernel was primarily used for. A notebook from each
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kernel  is  provided  in  this  project  submission,  with  part  1  and  part  3  being
included in the Google Colab notebook and part 2 being included in the Kaggle
notebook.

4.2 Google Colab
I started my initial experimentation in Google Colab that is why it starts with the
heading  Part  1.  Part  way  through  my  refinement  of  my  custom automation
functions I reached my limit with Google Colab so Part 2 of my code is found in
the Kaggle notebook. The final part of my testing and code can be found under
part 3 of the Google Colab notebook. In Part 3 I decided to purchase some Pay-
As-You_Go compute  so  that  I  could  continue the  rest  of  my project  without
further delays.

4.3 Kaggle
The Kaggle notebook starts with the heading of Part 2 as it is the point where I
switched from Google Colab. The Kaggle notebook only include one part and it
is where most of my refinements on my custom function can be found. I was
able to make some fairly large tests at the end of the Kaggle notebook but then
reached my limit. At this point I switched back to finish things off in my Google
Colab notebook under Part 3.

Section 5 – Performance
To improve  performance SqueezeNet,  EfficientNet,  Resnet  and  VGG models  were
tested  along  with  various  batch  sizes,  learning  rates  and  weight  decays.  Two  (2)
different image sizes were tested: (1) 224x224 and (2) 896x896. The parameters that
yielded the worse and best results are detailed below in items 5.1 and 5.2.

5.1 Worst Performance
I  wasn't able to test VGG16 to long before I ran into limit restrictions on the
kernel  but  it  wasn't  performing  all  that  well  from  what  was  seen.  Further
investigation would be required to confirm that VGG16 is not a good model for
this dataset. SqueezeNet models did not perform as well as the other models
which is not surprising giving the size and architecture of SqueezeNet models.
The  896x896 image size did not seem to yield better results and neither did
batch sizes 16 and 64. Learning rate range 1e-5 - 1e-1 did not yield good results
as well as weight decay range 1e-5 – 1e-3.
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5.2 Best Performance
After study some of the tests I  started to isolate that a batch size of 32 did
consistently well. Along with training only with a 32 batch size I narrowed the
learning rate range to 1e-3 – 1e-2 and the weight decay range to 1e-5 -1e-4 as
these ranges seems to provide the best results. In the end of all my testing the
best performance I achieved was from a Resnet32 model trained with a 224
image size,  32  batch  size,  a  learning  rate  of  3.102551277095900e-3 and  a
weight decay of 7.49113519525403e-05. This yielded a model with a training
loss of  0.022758, valid loss of 0.065226,  and error rate of  0.015762.  These
results show that the model is slightly overfitted but performing quite well.
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