
Sensor Fusion Using EKF for
Navigation and Path Planning

 Brandon Toews - s4208916

University of Gloucestershire

January 2025

Sensor Fusion Using EKF for Navigation and Path Planning

1. Simulation Setup and Kinematics Implementation....................................3

1.1. Robot Kinematics...3

1.2. Environment Setup...6

2. Sensor Integration and Data Acquisition...8

2.1. Sensor Selection...8

2.2. Data Acquisition...9

3. Sensor Fusion Using Extended Kalman Filter (EKF)...................................10

3.1 Fusion Techniques...10

3.2 Application in Navigation...13

4. Simulation Results and Comparison..14

4.1 Performance Metrics..14

4.2 Analysis of Results...15

5. Evaluation and Improvement Suggestions..23

5.1 Critical Evaluation..23

5.2 Improvements..25

References...26

Appendix..26

2

Sensor Fusion Using EKF for Navigation and Path Planning

 1. Simulation Setup and Kinematics
Implementation

 1.1.Robot Kinematics
Chosen Robot: Nova Carter
Kinematic Model: Differential Drive
Justification:

 Simplicity and ease of implementation
 Suitable for indoor environments and small-scale robotic

platforms
 Precise control over direction and speed with minimal

mechanical complexity
 Widely applicable for wheeled robots performing navigation tasks

in structured environments

The kinematic model for differential drive robots, like the Nova Carter robot
in this implementation, is expressed in Equation 1 and is responsible for ex-
plaining the movement of the robot. It describes how the robot's position (x,
y) and orientation θ evolve with respect to linear and angular velocities.

Equation 1. Kinematic Model

Where:
 v is the linear velocity (from the Twist message)
 ω is the angular velocity

3

Sensor Fusion Using EKF for Navigation and Path Planning

 θ is the robot's orientation

The wheel velocities 𝜈𝑟 and 𝜈𝑙 are derived using:

Equation 2. Wheel Velocity Model

Where:
 L = 0.413m (wheel distance)
 R = 0.14m (wheel radius)

The simulated environment, discussed in greater detail in the next section
(Section 1.2), is run in Isaac Sim. Isaac Sim’s differential drive model uses
OmniGraph nodes, specifically the Differential Controller Node, to compute
wheel velocities from linear and angular velocity inputs using the wheel ve-
locity equations (Equation 2) and kinematic parameters specified in the node
(Figure 1). These parameters are derived from published Segway RMPLite
220 specifications (Figure 2) [1] (Appendix). The differential drive path con-
troller MATLAB script calculates linear and angular velocities from target po-
sitions in the planned path and sends these to the controller in Isaac Sim
through a ROS2 bridge.

4

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 1. Nova Carter Differential Drive Parameters in Isaac Sim

Kinematic Parameters:

 wheelDistance: 0.413 meters (distance between the wheels)
 wheelRadius: 0.14 meters (radius of the wheels)
 maxLinearSpeed: 2.0 m/s
 maxAngularSpeed: 3.0 rad/s

5

Sensor Fusion Using EKF for Navigation and Path Planning

 maxAcceleration / maxDeceleration: 2.0 m/s² (limits for smooth
motion)

 dt: 0.01667 (time step, approximately 60 Hz simulation rate)

Figure 2. Robot Dimensions [1] Appendix

 1.2.Environment Setup
The environment is simulated within Isaac Sim as it provides a realistic scene
which is highly useful for practically applying theoretical robotics concepts.
Isaac Sim is a high-fidelity physics engine that is capable of simulating com-
mercial and industrial robots, robotic movement, and sensor data making it a
prime candidate for this simulation (Nvidia Omniverse IsaacSim, 2025). The
scene is a warehouse with forklifts, pallets, and shelving for the robot to nav-
igate through. These static obstacles have been placed to create a maze-like
environment that the robot can plan paths and navigate through. On running
the main MATLAB script, a robot object is created and given a goal position
to navigate to. The user can observe the robot moving towards the specified
goal through the viewport in Isaac Sim (Figure 3), front camera viewport in

6

Sensor Fusion Using EKF for Navigation and Path Planning

RViz2 (Figure 4), and the robot’s occupancy map displaying the planned path
and the robot’s pose along the way (Figure 5).

Figure 3. 3rd Person View in Isaac Sim Viewport

Figure 4. 1st Person View in RViz2 Viewport

7

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 5. Ground Truth Occupancy Map (Left), Robot’s LiDAR updated Occupancy
Map (Right)

 2.Sensor Integration and Data Acquisition
 2.1.Sensor Selection
Chassis Odometry Sensor: Collects position (x, y) and quaternion orienta-
tion (x, y, z, w) based on wheel encoder data, used in combination with IMU
for more accurate localization. GPS signals are significantly weakened or
blocked by warehouse roofs, walls, and metal racking (Ghasemieh, A. and
Kashef, R., 2024, p. 2, para. 3) . On the other hand, odometry works indepen-
dently of external signals, making it ideal for indoor environments. GPS typi-
cally has 5-10 meter accuracy, while odometry typically achieves centimeter-
level precision for short distances (Ghasemieh, A. and Kashef, R., 2024, p. 3,
para. 1). This precision is crucial for warehouse operations like navigating
narrow aisles. Odometry provides immediate feedback while GPS can have
significant delay in position updates. This allows for quick response time,
which is essential for obstacle avoidance and precise positioning. The system

8

Sensor Fusion Using EKF for Navigation and Path Planning

compensates for odometry's main weakness, drift, by fusing it with IMU data
through the Extended Kalman Filter and using LiDAR for correction against
discovered landmarks.

Chassis IMU Sensor: Is a combined sensor package that usually includes
accelerometers (measuring linear acceleration) and gyroscopes (measuring
angular velocity/rotation). These measurements are particularly valuable for
detecting rapid changes in the robot's motion and helping to correct for
wheel slippage that might occur on the warehouse floor. The acceleration
data is integrated over time to estimate velocity, while the angular velocity
provides direct measurement of the robot's rotation rate. The advantage of
using an IMU in a warehouse setting is that it combines these sensors into a
single calibrated package. Because of this, accelerometer and gyroscope
readings are perfectly synchronized with a single timestamp for all measure-
ments making it easier for sensor fusion. Sensors are pre-calibrated relative
to each other ensuring alignment between acceleration and rotation axes. Fi-
nally, there is considerable space and cost efficiency in using a single com-
ponent for mounting and wiring.

Front 2D LiDAR Sensor: Measures distances in a single horizontal plane
with accompanying angle of measurement. 2D LiDAR generates significantly
less data to process than a 3D LiDAR sensor which allows for more respon-
sive occupancy grid updates. Real-time performance is crucial for warehouse
navigations that include dynamic obstacles. This data undergoes several pro-
cessing steps, including range validation and conversion to Cartesian coordi-
nates, before being used to update the robot's internal map and assist in ob-
stacle avoidance.

 2.2.Data Acquisition
The heart of our data collection system lies in its ROS2-based architecture.
ROS2 provides a robust framework for handling real-time sensor data

9

Sensor Fusion Using EKF for Navigation and Path Planning

through its publisher-subscriber model (Carreira, R. et al., 2024, pp. 11-12).
Each sensor communicates through dedicated ROS2 topics controlled with a
precise timing mechanism that ensures consistent data sampling across all
sensors. Operating at 60Hz (with a time step of 0.01667 seconds), this timer-
based approach synchronizes data collection and processing, crucial for
maintaining accurate state estimation. This high update rate allows the robot
to respond quickly to changes in its environment while maintaining smooth
motion control. To facilitate system analysis and improvement, we've imple-
mented a comprehensive data logging system. This system records not only
the raw sensor readings but also the processed state estimates and ground
truth data for comparison. The logged data proves invaluable for post-mis-
sion analysis, allowing us to evaluate system performance and identify areas
for improvement.

3. Sensor Fusion Using Extended Kalman Filter (EKF)

3.1 Fusion Techniques
The Standard Kalman Filter assumes the state transition and observation
models are linear. The kinematic model employed for the differential drive is
inherently non-linear due to the trigonometric functions cos(θ) and sin(θ)
(Equation 1). The state transition model (Equation 4) describes transitions
from states by combining the state definition (Equation 3) with the non-linear
kinematic model (Equations 1). EKF solves this problem by linearizing the
non-linear system at each time step by computing Jacobian matrices (Jiang,
L. and Wu, L., 2024, p. 2, para. 1). The state transition Jacobian matrix (Equa-
tion 5) is calculated by considering the state transition model (Equations 4)
as f(x) and finding the partial derivatives for each function of f(x) with re-
spect to each term in the state definition model (Equation 3).

10

Sensor Fusion Using EKF for Navigation and Path Planning

Equation 3. State Definition Equation 4. State Transition Model

Equation 5. State Transition Jacobian Matrix

The observation models are linear, and we add measurement noise to ex-
plain the uncertainty in the readings from the sensors for things like drift or
wheel slippage (Equations 6 & 7). Since we need to perform matrix calcula-
tions because of having to linearize the state transition model with a Jaco-
bian matrix, we also need to use Jacobians of the observation models to ap-
ply to the state transition Jacobian (Equation 5). The observation model Jaco-
bians (Equation 8 & 9) are calculated by considering the observation models
(Equations 6 & 7) as h(x) and finding the partial derivatives for each function
of h(x) with respect to each term in the state definition model (Equation 3).

11

Sensor Fusion Using EKF for Navigation and Path Planning

Equation 6. Odometry Observation
Model

Equation 7. IMU Observation Model

Equation 8. Odometry Observation Ja-
cobian Matrix

Equation 9. IMU Observation Jacobian
Matrix

Finally, we perform the prediction step of the state transition where we apply
the process noise to the state transition Jacobian to model the uncertainty of
the prediction and update the predicted state covariance (Equation 10).
Then we incorporate the measurement. Then we update the observed mea-
surements using the observation Jacobians, measurement noise, and pre-
dicted state covariance to create the Kalman gain filter. This filter is then
used to weigh the contribution of the predicted state transition against the
measurement observations in the final outcome of the state prediction. The
filter bases these contributions of the predicted state transition and mea-
surement observations on the respective covariances, or the uncertainty, of
each (Equation 11). *

12

Sensor Fusion Using EKF for Navigation and Path Planning

Equation 10. Predicted State Covari-
ance

Equation 11. Measurement Update us-
ing Kalman Gain

* This measurement update step is done twice in the code implementation,
once for the odometry measurements and again for IMU measurements.

3.2 Application in Navigation
Ultimately, EKF is an appropriate method for sensor fusion in this case be-
cause it can effectively combine IMU and Odometry readings to improve
state estimation and subsequent navigation accuracy. Not only this, EKF can
simultaneously handle the non-linearity introduced by the state transition
model to produce a reasonable level of accuracy for the task of navigating in
a warehouse environment. Artificial Neural Networks (ANNs) are another vi-
able option for sensor fusion as they too can combine sensor readings and
manage non-linear associations quite well. However, ANNs are typically more
computationally expensive than EKF and require an undetermined amount of
training and fine tuning to produce sufficient accuracy resulting in longer de-
velopment durations. As a result, EKF has been used in this simulation to
produce a lightweight and accurate solution suitable for the hardware re-
source and real-time computational constraints of the project.

13

Sensor Fusion Using EKF for Navigation and Path Planning

As seen depicted in Figure 6, EKF sensor fusion provides the robot with accu-
rate enough pose estimations, in relation to ground truth, to allow for the ro-
bot to make properly informed decisions about velocities and headings.
Whereas, when the robot does not have a consistent and accurate idea of
where it is and how it is oriented in space the velocity adjusts become more
erratic and susceptible to bias over time. The redundancy provided by data
collected from multiple sensors measuring similar types of orientation infor-
mation provides a navigation framework that is resilient against sensor noise
and/or failure. Individual sensor noise fluctuations are not correlated with
one another, permitting a more well-rounded estimation of state at any given
time. We will delve into how well this EKF implementation performs by exam-
ining in comparison with alternate methods of pose estimation.

Figure 6. Sensor Fusion Accuracy Compared to A* Planned Path & Ground Truth

4. Simulation Results and Comparison
4.1 Performance Metrics
We provide three (3) different modes of state estimation to compare the
effects of measurement noise on navigation and to illustrate just how
effective EKF is at addressing this. First, a dead reckoning implementation

14

Sensor Fusion Using EKF for Navigation and Path Planning

that uses only control inputs and the state transition function to track
orientation and navigate. Second, odometry-only state estimation that
doesn’t compensate for the simulated sensor noise of the odometer. Lastly,
the EKF solution that fuses odometry and IMU readings, models sensor and
process uncertainty, and that elegantly combines state transition predictions
with the observed measurements. We will look at:

(1) How accurate the modes are at estimating their state in comparison
with the ground truth state.

(2)How accurate the modes are at following the planned path, calculated
from an A* algorithm taken from the MATLAB robotics toolbox. This will
be a comparison of the ground truth and the planned path as the
ground truth is a representation of what the robot actually did.

(3)Navigation and path error probability distributions, bar charts depicting
mean and maximum path deviation, path length, completion time.

4.2 Analysis of Results
As can be seen in Figures 7 and 8, dead reckoning is highly inaccurate in
pose estimation and is subsequently unable to follow the planned path in any
practical capacity. It seems that without sensor data to interoceptively
inform the robot of its orientation it is overcome by sensor noise, bias, and
process noise.

15

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 7. Dead Reckoning - Accuracy Compared to A* Planned Path, Ground Truth,

& State Estimation

Figure 8. Dead Reckoning - Pose Estimate Error Probability Distributions Compared
to Ground Truth

16

Sensor Fusion Using EKF for Navigation and Path Planning

Odometry-only is a marked improvement over dead reckoning on all
accounts and performs reasonably well considering we are only using one (1)
sensor (Figures 9 & 10). The robot’s state estimation is erratic but not so
much so that it cannot follow the planned path to reach the goal pose. This
mode of estimation may be sufficient in certain environments and with
sensors that do not produce high levels of noise. However, as sensor noise
increases the performance of this mode of estimation decreases, causing
many overcompensations to velocities and heading (Figure 11). These
frequent and powerful corrections would likely cause more wear and tear on
the vehicle.

Figure 9. Odometry Only - Accuracy Compared to A* Planned Path, Ground Truth, &
State Estimation

17

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 10. Odometry Only - Pose Estimate Error Probability Distributions Compared
to Ground Truth

The EKF solution performs the best of all three (3), showcasing a robust
ability to handle measurement noise in real-time. This mode of state
estimation boasts the least amount of error in all metrics across the board
with the exception of completion time. EKF produces tighter error probability
distributions with equal or lower magnitudes than the other modes of state
estimation. The EKF ground truth has a maximum deviation from the planned
path almost half that of, and even a few points away from being equal to the
mean deviation of the odometry-only solution (Table 2). As we manually
increase measurement noise, we can see how the EKF still maintains stability
and accuracy while odometry-only suffers from even greater fluctuations in
state estimation (Figure 16 & 17). Even though EKFs tend to be

18

Sensor Fusion Using EKF for Navigation and Path Planning

computationally expensive they do produce remarkable results in contexts
like these (Vitali, R.V., McGinnis, R.S. and Perkins, N.C., 2021, pp. 1-2).

Figure 11. EKF - Accuracy Compared to A* Planned Path, Ground Truth, & State
Estimation

Figure 12. EKF - Pose Estimate Error Probability Distributions Compared to Ground
Truth

19

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 13. All Ground Truths Compared to A* Planned Path

Figure 14. All Estimation Methods’ Estimations, Ground Truths, A* Planned Path

20

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 15. All Estimation Methods’ Ground Truths Against A* Planned Path

Table 1. All Estimation Methods’ Ground Truths Against A* Planned Path Error

21

Sensor Fusion Using EKF for Navigation and Path Planning

Table 2. All Estimation Methods’ Ground Truths Against A* Planned Path Deviations,
Path Lengths, Avg Heading Change, Time in Thresholds

Figure 16. Odometry Only - Higher Noise Accuracy Compared to A* Planned Path &
Ground Truth

22

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 17. EKF - Higher Noise Accuracy Compared to A* Planned Path & Ground
Truth

5. Evaluation and Improvement Suggestions
5.1 Critical Evaluation
While EKF clearly outperforms the other methods of state estimation
explored in this paper, it is not without its challenges. Tuning the process
noise manually is a time-consuming trial-and-error endeavor even with data
analytics to inform the adjustments. Meanwhile, deploying and developing
Artificial Neural Networks (ANN) are becoming easier with support from
libraries like PyTorch and are more than capable of handling the non-linear
nature of state estimations and transitions (Ghorbani, S. and Janabi-Sharifi,
F., 2022, p.1, para. 5). The current EKF implementation could take more full
advantage of the IMU and odometry orientation data by processing
quaternion information directly using quaternion specific equations rather

23

Sensor Fusion Using EKF for Navigation and Path Planning

than converting the quaternion to θ at the time of collection (Vitali, R.V.,
McGinnis, R.S. and Perkins, N.C., 2021, pp. 2-6).

As stated previously, the robot uses a 2D LiDAR sensor to update its internal
occupancy map which is crucial for navigating a dynamic environment like a
warehouse. The horizontal orientation of the obstacle detection provided by
this sensor presents issues in this context. Even though the sensor is effec-
tively mapping most of the obstacles in the environment it is missing a key
feature that results in collisions. If forklift forks are raised off the ground,
then the LiDAR doesn’t detect these long protrusions which routinely causes
collisions with the robot. Compounding the situation further, the robot’s oc-
cupancy map cannot be inflated as each time the LiDAR updates the map it
would have to call the inflate method causing already inflated objects to con-
tinue to grow until enveloping the entire map. The current A* algorithm be-
ing used doesn’t have a minimum turning radius property, therefore, the
planner charts paths that bring the robot too close to objects causing colli-
sions, even with obstacles it registers in its occupancy map. Using a high-fi-
delity simulation engine like Isaac Sim pushes these kinds of real-world chal-
lenges to the fore providing the opportunity to address these in a simulated
environment before deployment. In conjunction with this, usage of the ROS2
bridge for the environment setup facilitates easy portability to real-world ap-
plications (Carreira, R. et al., 2024, pp. 5-8).

24

Sensor Fusion Using EKF for Navigation and Path Planning

Figure 18. 2D LiDAR Doesn’t Update Forklift Forks onto Robot’s Occupancy Map

Figure 19. Robot Collides with Forklift Forks

5.2 Improvements
A more comprehensive obstacle detection system is required before this
implementation could be used for real world applications. The Nova Carter
robot does have a 3D LiDAR sensor which would be more than capable of
addressing the forklift forks issue. Or a YOLOv8n vision model, custom
trained to detect forklifts, could be used in combination with the front
camera to identify forklifts and mark the area around the forks on the robot’s
occupancy map (Jiang, L. and Wu, L., 2024, pp. 10-13). Also, the

25

Sensor Fusion Using EKF for Navigation and Path Planning

`plannerHybridAStar` tool in the MATLAB robotics toolbox would effectively
address the obstacle avoidance issues that are currently experienced.

References
Carreira, R. et al. (2024) “A ROS2-Based Gateway for Modular Hardware
Usage in Heterogeneous Environments,” Sensors (Basel, Switzerland),
24(19). Available at: https://doi.org/10.3390/s24196341.

Ghasemieh, A. and Kashef, R. (2024) “Towards explainable artificial
intelligence in deep vision-based odometry,” Computers and Electrical
Engineering, 115. Available at:
https://doi.org/10.1016/j.compeleceng.2024.109127.

Ghorbani, S. and Janabi-Sharifi, F. (2022) “Extended Kalman Filter State
Estimation for Aerial Continuum Manipulation Systems,” IEEE Sensors
Letters, 6(8). Available at: https://doi.org/10.1109/LSENS.2022.3190890.

Jiang, L. and Wu, L. (2024) “Enhanced Yolov8 network with Extended Kalman
Filter for wildlife detection and tracking in complex environments,” Ecological
Informatics, 84. Available at: https://doi.org/10.1016/j.ecoinf.2024.102856.

Nvidia Omniverse IsaacSim (2025) Isaac Sim Reference Architecture.
Available at:
https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_sim_reference_archit
ecture.html#isaac-sim-reference-architecture (Accessed: 11 January 2025).

Vitali, R.V., McGinnis, R.S. and Perkins, N.C. (2021) “Robust Error-State
Kalman Filter for Estimating IMU Orientation,” IEEE Sensors Journal, 21(3).
Available at: https://doi.org/10.1109/JSEN.2020.3026895.

Appendix
[1] Segway-RMP-220Lite-Specs.pdf

26

https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_sim_reference_architecture.html#isaac-sim-reference-architecture
https://docs.omniverse.nvidia.com/isaacsim/latest/isaac_sim_reference_architecture.html#isaac-sim-reference-architecture
https://doi.org/10.1109/LSENS.2022.3190890
https://doi.org/10.3390/s24196341

Sensor Fusion Using EKF for Navigation and Path Planning

27

Segway RMPLite

Segway RMPLite
Segway RMP (Robotics Mobility Platform) comes with a general and

integrated robot chassis solution for enterprises and/or third-party

developers. The hardware modular design and software SDK interface has

the ability to support secondary development and/or customized services.

Specifications

Physical
parameters

Dimensions

Structure

Parameters

Tire size

Weight

Standard Load

Obstacle Avoidance

Suspension Travel

Drive

IP Rating

L*W*H (mm): 730*499*280

Axil base*Wheelbase*Ground

clearance (mm): 513.5*413*69

11 inches (280mm) Hub motor

33KG

50kg

5cm/8°/Speed bump

4mm (Rear)

FWD, Differential Steering

IP65

Max Speed
Max Steering
Speed
Minimum Turning
Radius
Braking

Control
Braking Method

Functions

3m/s
3rad/s

0m

With No Load: 3m/s 0.9m
Braking Acc: 0.5g
Remote control, host computer control

Electronic Brake

Interface
Supporting
system, API

Feedback Data

3D Model

Connectivity

UART, CAN
C/C++, ROS

Encoder, Hall, IMU

Gazebo, Rviz model

Range

Capacity

Charging

Host computer
power

1152wh- Max Load:3m/s, Range:80Km

48V 20Ah/24Ah
Manual charging/Swappable battery/
Provided with automatic charging interface

48V 400W

Battery

Buttons

Status
Indication

Emergency stop button, Push to

move button, Power button

Power on/off status indicator, Platform base

status indicator, controls indication, Battery

level indicator, Charging status indicator

UI

Segway RMPLite 220
RMP Lite provides a highly adaptable platform covering scenarios such as

indoor/outdoor delivery, patrolling, service, cleaning(disinfecting), AGV

(warehouse), and special application robots. Segway RMP lite comes with a

large-capacity battery to sustain 10 hours of non-stop service. The

software is compatible with ROS and Isaac operating systems providing

Gazebo and Rviz simulation models with tutorial cases.

Light
Strip

Infrared
Sensor

Ultrasonic
Sensor

Bumper
Sensor

Mounting
Rod

Extension kit

	1. Simulation Setup and Kinematics Implementation
	1.1. Robot Kinematics
	1.2. Environment Setup

	2. Sensor Integration and Data Acquisition
	2.1. Sensor Selection
	2.2. Data Acquisition
	3. Sensor Fusion Using Extended Kalman Filter (EKF)
	3.1 Fusion Techniques
	3.2 Application in Navigation

	4. Simulation Results and Comparison
	4.1 Performance Metrics
	4.2 Analysis of Results

	5. Evaluation and Improvement Suggestions
	5.1 Critical Evaluation
	5.2 Improvements

	References
	Appendix

