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 1. Simulation Setup and Kinematics 
Implementation

 1.1.Robot Kinematics
Chosen Robot: Nova Carter
Kinematic Model: Differential Drive
Justification: 

 Simplicity and ease of implementation
 Suitable for indoor environments and small-scale robotic 

platforms
 Precise control over direction and speed with minimal 

mechanical complexity
 Widely applicable for wheeled robots performing navigation tasks

in structured environments

The kinematic model for differential drive robots, like the Nova Carter robot 
in this implementation, is expressed in Equation 1 and is responsible for ex-
plaining the movement of the robot. It describes how the robot's position (x, 
y) and orientation θ  evolve with respect to linear and angular velocities.

Equation 1. Kinematic Model

Where:
 v is the linear velocity (from the Twist message)
 ω is the angular velocity
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 θ is the robot's orientation

The wheel velocities 𝜈𝑟 and 𝜈𝑙 are derived using:

Equation 2.  Wheel Velocity Model

Where:
 L = 0.413m (wheel distance)
 R = 0.14m (wheel radius)

The simulated environment, discussed in greater detail in the next section 
(Section 1.2), is run in Isaac Sim. Isaac Sim’s differential drive model uses 
OmniGraph nodes, specifically the Differential Controller Node, to compute 
wheel velocities from linear and angular velocity inputs using the wheel ve-
locity equations (Equation 2) and kinematic parameters specified in the node
(Figure 1). These parameters are derived from published Segway RMPLite 
220 specifications (Figure 2) [1] (Appendix). The differential drive path con-
troller MATLAB script calculates linear and angular velocities from target po-
sitions in the planned path and sends these to the controller in Isaac Sim 
through a ROS2 bridge.
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Figure 1. Nova Carter Differential Drive Parameters in Isaac Sim

Kinematic Parameters:

 wheelDistance: 0.413 meters (distance between the wheels)
 wheelRadius: 0.14 meters (radius of the wheels)
 maxLinearSpeed: 2.0 m/s
 maxAngularSpeed: 3.0 rad/s
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 maxAcceleration / maxDeceleration: 2.0 m/s² (limits for smooth 
motion)

 dt: 0.01667 (time step, approximately 60 Hz simulation rate)

Figure 2. Robot Dimensions [1] Appendix

 1.2.Environment Setup
The environment is simulated within Isaac Sim as it provides a realistic scene
which is highly useful for practically applying theoretical robotics concepts. 
Isaac Sim is a high-fidelity physics engine that is capable of simulating com-
mercial and industrial robots, robotic movement, and sensor data making it a
prime candidate for this simulation (Nvidia  Omniverse IsaacSim, 2025). The 
scene is a warehouse with forklifts, pallets, and shelving for the robot to nav-
igate through. These static obstacles have been placed to create a maze-like
environment that the robot can plan paths and navigate through. On running
the main MATLAB script, a robot object is created and given a goal position 
to navigate to. The user can observe the robot moving towards the specified 
goal through the viewport in Isaac Sim (Figure 3), front camera viewport in 
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RViz2 (Figure 4), and the robot’s occupancy map displaying the planned path
and the robot’s pose along the way (Figure 5).

Figure 3. 3rd Person View in Isaac Sim Viewport

Figure 4. 1st Person View in RViz2 Viewport
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Figure 5. Ground Truth Occupancy Map (Left), Robot’s LiDAR updated Occupancy
Map (Right)

 2.Sensor Integration and Data Acquisition
 2.1.Sensor Selection
Chassis Odometry Sensor: Collects position (x, y) and quaternion orienta-
tion (x, y, z, w) based on wheel encoder data, used in combination with IMU 
for more accurate localization. GPS signals are significantly weakened or 
blocked by warehouse roofs, walls, and metal racking (Ghasemieh, A. and 
Kashef, R., 2024, p. 2, para. 3) . On the other hand, odometry works indepen-
dently of external signals, making it ideal for indoor environments. GPS typi-
cally has 5-10 meter accuracy, while odometry typically achieves centimeter-
level precision for short distances (Ghasemieh, A. and Kashef, R., 2024, p. 3, 
para. 1). This precision is crucial for warehouse operations like navigating 
narrow aisles. Odometry provides immediate feedback while GPS can have 
significant delay in position updates. This allows for quick response time, 
which is essential for obstacle avoidance and precise positioning. The system
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compensates for odometry's main weakness, drift, by fusing it with IMU data 
through the Extended Kalman Filter and using LiDAR for correction against 
discovered landmarks.

Chassis IMU Sensor: Is a combined sensor package that usually includes 
accelerometers (measuring linear acceleration) and gyroscopes (measuring 
angular velocity/rotation). These measurements are particularly valuable for 
detecting rapid changes in the robot's motion and helping to correct for 
wheel slippage that might occur on the warehouse floor. The acceleration 
data is integrated over time to estimate velocity, while the angular velocity 
provides direct measurement of the robot's rotation rate. The advantage of 
using an IMU in a warehouse setting is that it combines these sensors into a 
single calibrated package. Because of this, accelerometer and gyroscope 
readings are perfectly synchronized with a single timestamp for all measure-
ments making it easier for sensor fusion. Sensors are pre-calibrated relative 
to each other ensuring alignment between acceleration and rotation axes. Fi-
nally, there is considerable space and cost efficiency in using a single com-
ponent for mounting and wiring.

Front 2D LiDAR Sensor: Measures distances in a single horizontal plane 
with accompanying angle of measurement. 2D LiDAR generates significantly 
less data to process than a 3D LiDAR sensor which allows for more respon-
sive occupancy grid updates. Real-time performance is crucial for warehouse
navigations that include dynamic obstacles. This data undergoes several pro-
cessing steps, including range validation and conversion to Cartesian coordi-
nates, before being used to update the robot's internal map and assist in ob-
stacle avoidance.

 2.2.Data Acquisition
The heart of our data collection system lies in its ROS2-based architecture. 
ROS2 provides a robust framework for handling real-time sensor data 

9



Sensor Fusion Using EKF for Navigation and Path Planning

through its publisher-subscriber model (Carreira, R. et al., 2024, pp. 11-12). 
Each sensor communicates through dedicated ROS2 topics controlled with a 
precise timing mechanism that ensures consistent data sampling across all 
sensors. Operating at 60Hz (with a time step of 0.01667 seconds), this timer-
based approach synchronizes data collection and processing, crucial for 
maintaining accurate state estimation. This high update rate allows the robot
to respond quickly to changes in its environment while maintaining smooth 
motion control. To facilitate system analysis and improvement, we've imple-
mented a comprehensive data logging system. This system records not only 
the raw sensor readings but also the processed state estimates and ground 
truth data for comparison. The logged data proves invaluable for post-mis-
sion analysis, allowing us to evaluate system performance and identify areas
for improvement.

3. Sensor Fusion Using Extended Kalman Filter (EKF)

3.1 Fusion Techniques
The Standard Kalman Filter assumes the state transition and observation 
models are linear. The kinematic model employed for the differential drive is 
inherently non-linear due to the trigonometric functions cos(θ) and sin(θ) 
(Equation 1). The state transition model (Equation 4) describes transitions 
from states by combining the state definition (Equation 3) with the non-linear
kinematic model (Equations 1). EKF solves this problem by linearizing the 
non-linear system at each time step by computing Jacobian matrices (Jiang, 
L. and Wu, L., 2024, p. 2, para. 1). The state transition Jacobian matrix (Equa-
tion 5) is calculated by considering the state transition model (Equations 4) 
as f(x) and finding the partial derivatives for each function of f(x) with re-
spect to each term in the state definition model (Equation 3). 
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Equation 3. State Definition Equation 4. State Transition Model

Equation 5. State Transition Jacobian Matrix

The observation models are linear, and we add measurement noise to ex-
plain the uncertainty in the readings from the sensors for things like drift or 
wheel slippage (Equations 6 & 7). Since we need to perform matrix calcula-
tions because of having to linearize the state transition model with a Jaco-
bian matrix, we also need to use Jacobians of the observation models to ap-
ply to the state transition Jacobian (Equation 5). The observation model Jaco-
bians (Equation 8 & 9) are calculated by considering the observation models 
(Equations 6 & 7) as h(x) and finding the partial derivatives for each function 
of h(x) with respect to each term in the state definition model (Equation 3).
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Equation 6. Odometry Observation
Model

Equation 7. IMU Observation Model

Equation 8. Odometry Observation Ja-
cobian Matrix

Equation 9. IMU Observation Jacobian
Matrix

Finally, we perform the prediction step of the state transition where we apply
the process noise to the state transition Jacobian to model the uncertainty of 
the prediction and update the predicted state covariance (Equation 10).  
Then we incorporate the measurement. Then we update the observed mea-
surements using the observation Jacobians, measurement noise, and pre-
dicted state covariance to create the Kalman gain filter. This filter is then 
used to weigh the contribution of the predicted state transition against the 
measurement observations in the final outcome of the state prediction.  The 
filter bases these contributions of the predicted state transition and mea-
surement observations on the respective covariances, or the uncertainty, of 
each (Equation 11). *
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Equation 10. Predicted State Covari-
ance

Equation 11. Measurement Update us-
ing Kalman Gain

* This measurement update step is done twice in the code implementation, 
once for the odometry measurements and again for IMU measurements.

3.2 Application in Navigation
Ultimately, EKF is an appropriate method for sensor fusion in this case be-
cause it can effectively combine IMU and Odometry readings to improve 
state estimation and subsequent navigation accuracy. Not only this, EKF can 
simultaneously handle the non-linearity introduced by the state transition 
model to produce a reasonable level of accuracy for the task of navigating in 
a warehouse environment. Artificial Neural Networks (ANNs) are another vi-
able option for sensor fusion as they too can combine sensor readings and 
manage non-linear associations quite well. However, ANNs are typically more
computationally expensive than EKF and require an undetermined amount of
training and fine tuning to produce sufficient accuracy resulting in longer de-
velopment durations. As a result, EKF has been used in this simulation to 
produce a lightweight and accurate solution suitable for the hardware re-
source and real-time computational constraints of the project.

13



Sensor Fusion Using EKF for Navigation and Path Planning

As seen depicted in Figure 6, EKF sensor fusion provides the robot with accu-
rate enough pose estimations, in relation to ground truth, to allow for the ro-
bot to make properly informed decisions about velocities and headings. 
Whereas, when the robot does not have a consistent and accurate idea of 
where it is and how it is oriented in space the velocity adjusts become more 
erratic and susceptible to bias over time. The redundancy provided by data 
collected from multiple sensors measuring similar types of orientation infor-
mation provides a navigation framework that is resilient against sensor noise
and/or failure. Individual sensor noise fluctuations are not correlated with 
one another, permitting a more well-rounded estimation of state at any given
time. We will delve into how well this EKF implementation performs by exam-
ining in comparison with alternate methods of pose estimation.

Figure 6. Sensor Fusion Accuracy Compared to A* Planned Path & Ground Truth

4. Simulation Results and Comparison
4.1 Performance Metrics
We provide three (3) different modes of state estimation to compare the 
effects of measurement noise on navigation and to illustrate just how 
effective EKF is at addressing this. First, a dead reckoning implementation 
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that uses only control inputs and the state transition function to track 
orientation and navigate. Second, odometry-only state estimation that 
doesn’t compensate for the simulated sensor noise of the odometer. Lastly, 
the EKF solution that fuses odometry and IMU readings, models sensor and 
process uncertainty, and that elegantly combines state transition predictions
with the observed measurements. We will look at:

(1) How accurate the modes are at estimating their state in comparison 
with the ground truth state.

(2)How accurate the modes are at following the planned path, calculated 
from an A* algorithm taken from the MATLAB robotics toolbox. This will
be a comparison of the ground truth and the planned path as the 
ground truth is a representation of what the robot actually did.

(3)Navigation and path error probability distributions, bar charts depicting
mean and maximum path deviation, path length, completion time.

4.2 Analysis of Results
As can be seen in Figures 7 and 8, dead reckoning is highly inaccurate in 
pose estimation and is subsequently unable to follow the planned path in any
practical capacity. It seems that without sensor data to interoceptively 
inform the robot of its orientation it is overcome by sensor noise, bias, and 
process noise.
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Figure 7. Dead Reckoning - Accuracy Compared to A* Planned Path, Ground Truth,

& State Estimation

Figure 8. Dead Reckoning - Pose Estimate Error Probability Distributions Compared
to Ground Truth
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Odometry-only is a marked improvement over dead reckoning on all 
accounts and performs reasonably well considering we are only using one (1)
sensor (Figures 9 & 10). The robot’s state estimation is erratic but not so 
much so that it cannot follow the planned path to reach the goal pose. This 
mode of estimation may be sufficient in certain environments and with 
sensors that do not produce high levels of noise. However, as sensor noise 
increases the performance of this mode of estimation decreases, causing 
many overcompensations to velocities and heading (Figure 11).  These 
frequent and powerful corrections would likely cause more wear and tear on 
the vehicle.

Figure 9. Odometry Only - Accuracy Compared to A* Planned Path, Ground Truth, &
State Estimation
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Figure 10. Odometry Only - Pose Estimate Error Probability Distributions Compared 
to Ground Truth

The EKF solution performs the best of all three (3), showcasing a robust 
ability to handle measurement noise in real-time. This mode of state 
estimation boasts the least amount of error in all metrics across the board 
with the exception of completion time. EKF produces tighter error probability 
distributions with equal or lower magnitudes than the other modes of state 
estimation. The EKF ground truth has a maximum deviation from the planned
path almost half that of, and even a few points away from being equal to the 
mean deviation of the odometry-only solution (Table 2). As we manually 
increase measurement noise, we can see how the EKF still maintains stability
and accuracy while odometry-only suffers from even greater fluctuations in 
state estimation (Figure 16 & 17). Even though EKFs tend to be 
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computationally expensive they do produce remarkable results in contexts 
like these (Vitali, R.V., McGinnis, R.S. and Perkins, N.C., 2021, pp. 1-2).

Figure 11. EKF - Accuracy Compared to A* Planned Path, Ground Truth, & State
Estimation

Figure 12. EKF - Pose Estimate Error Probability Distributions Compared to Ground
Truth
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Figure 13. All Ground Truths Compared to A* Planned Path

Figure 14. All Estimation Methods’ Estimations, Ground Truths, A* Planned Path
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Figure 15. All Estimation Methods’ Ground Truths Against A* Planned Path

Table 1. All Estimation Methods’  Ground Truths Against A* Planned Path Error
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Table 2. All Estimation Methods’  Ground Truths Against A* Planned Path Deviations,
Path Lengths, Avg Heading Change, Time in Thresholds

Figure 16. Odometry Only - Higher Noise Accuracy Compared to A* Planned Path &
Ground Truth
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Figure 17. EKF - Higher Noise Accuracy Compared to A* Planned Path & Ground
Truth

5. Evaluation and Improvement Suggestions
5.1 Critical Evaluation
While EKF clearly outperforms the other methods of state estimation 
explored in this paper, it is not without its challenges. Tuning the process 
noise manually is a time-consuming trial-and-error endeavor even with data 
analytics to inform the adjustments. Meanwhile, deploying and developing 
Artificial Neural Networks (ANN) are becoming easier with support from 
libraries like PyTorch and are more than capable of handling the non-linear 
nature of state estimations and transitions (Ghorbani, S. and Janabi-Sharifi, 
F., 2022, p.1, para. 5). The current EKF implementation could take more full 
advantage of the IMU and odometry orientation data by processing 
quaternion information directly using quaternion specific equations rather 
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than converting the quaternion to θ at the time of collection (Vitali, R.V., 
McGinnis, R.S. and Perkins, N.C., 2021, pp. 2-6).

As stated previously, the robot uses a 2D LiDAR sensor to update its internal 
occupancy map which is crucial for navigating a dynamic environment like a 
warehouse. The horizontal orientation of the obstacle detection provided by 
this sensor presents issues in this context. Even though the sensor is effec-
tively mapping most of the obstacles in the environment it is missing a key 
feature that results in collisions. If forklift forks are raised off the ground, 
then the LiDAR doesn’t detect these long protrusions which routinely causes 
collisions with the robot. Compounding the situation further, the robot’s oc-
cupancy map cannot be inflated as each time the LiDAR updates the map it 
would have to call the inflate method causing already inflated objects to con-
tinue to grow until enveloping the entire map. The current A* algorithm be-
ing used doesn’t have a minimum turning radius property, therefore, the 
planner charts paths that bring the robot too close to objects causing colli-
sions, even with obstacles it registers in its occupancy map. Using a high-fi-
delity simulation engine like Isaac Sim pushes these kinds of real-world chal-
lenges to the fore providing the opportunity to address these in a simulated 
environment before deployment. In conjunction with this, usage of the ROS2 
bridge for the environment setup facilitates easy portability to real-world ap-
plications (Carreira, R. et al., 2024, pp. 5-8).
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Figure 18. 2D LiDAR Doesn’t Update Forklift Forks onto Robot’s Occupancy Map

Figure 19. Robot Collides with Forklift Forks

5.2 Improvements
A more comprehensive obstacle detection system is required before this 
implementation could be used for real world applications. The Nova Carter 
robot does have a 3D LiDAR sensor which would be more than capable of 
addressing the forklift forks issue. Or a YOLOv8n vision model, custom 
trained to detect forklifts, could be used in combination with the front 
camera to identify forklifts and mark the area around the forks on the robot’s
occupancy map (Jiang, L. and Wu, L., 2024, pp. 10-13). Also, the 
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`plannerHybridAStar` tool in the MATLAB robotics toolbox would effectively 
address the obstacle avoidance issues that are currently experienced.
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Segway RMPLite

Segway RMPLite 
Segway RMP (Robotics Mobility Platform) comes with a general and 

integrated robot chassis solution for enterprises and/or third-party 

developers. The hardware modular design and software SDK interface has 

the ability to support secondary development and/or customized services.

Specifications

Physical 
parameters

Dimensions

Structure 

Parameters

Tire size

Weight

Standard Load

Obstacle Avoidance

Suspension Travel

Drive

IP Rating

L*W*H (mm): 730*499*280

Axil base*Wheelbase*Ground 

clearance (mm): 513.5*413*69

11 inches (280mm) Hub motor

33KG

50kg

5cm/8°/Speed bump

4mm (Rear)

FWD, Differential Steering

IP65

Max Speed
Max Steering 
Speed
Minimum Turning 
Radius
Braking

Control
Braking Method

Functions

3m/s
3rad/s

0m

With No Load: 3m/s 0.9m
Braking Acc: 0.5g
Remote control, host computer control

Electronic Brake

Interface
Supporting 
system, API

Feedback Data

3D Model

Connectivity

UART, CAN
C/C++, ROS

Encoder, Hall, IMU

Gazebo, Rviz model

Range

Capacity

Charging

Host computer 
power

1152wh- Max Load:3m/s, Range:80Km

48V 20Ah/24Ah
Manual charging/Swappable battery/
Provided with automatic charging interface

48V 400W

Battery

Buttons

Status 
Indication

Emergency stop button, Push to 

move button, Power button

Power on/off status indicator, Platform base 

status indicator, controls indication, Battery 

level indicator, Charging status indicator

UI

Segway RMPLite 220
RMP Lite provides a highly adaptable platform covering scenarios such as 

indoor/outdoor delivery, patrolling, service, cleaning(disinfecting), AGV 

(warehouse), and special application robots. Segway RMP lite comes with a 

large-capacity battery to sustain 10 hours of non-stop service. The 

software is compatible with ROS and Isaac operating systems providing 

Gazebo and Rviz simulation models with tutorial cases.

Light 
Strip

Infrared
Sensor

Ultrasonic
Sensor

Bumper
Sensor 

Mounting 
Rod 

Extension kit
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